Triangular Bases in Quantum Cluster Algebras

نویسندگان

  • Arkady Berenstein
  • Andrei Zelevinsky
چکیده

A lot of recent activity has been directed toward various constructions of “natural” bases in cluster algebras. We develop a new approach to this problem which is close in spirit to Lusztig’s construction of a canonical basis, and the pioneering construction of the Kazhdan–Lusztig basis in a Hecke algebra. The key ingredient of our approach is a new version of Lusztig’s Lemma that we apply to all acyclic quantum cluster algebras. As a result, we construct the “canonical” basis in every such algebra that we call the canonical triangular basis.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Greedy bases in rank 2 quantum cluster algebras.

We identify a quantum lift of the greedy basis for rank 2 coefficient-free cluster algebras. Our main result is that our construction does not depend on the choice of initial cluster, that it builds all cluster monomials, and that it produces bar-invariant elements. We also present several conjectures related to this quantum greedy basis and the triangular basis of Berenstein and Zelevinsky.

متن کامل

A Quantum Analogue of Generic Bases for Affine Cluster Algebras

We construct quantized versions of generic bases in quantum cluster algebras of finite and affine types. Under the specialization of q and coefficients to 1, these bases are generic bases of finite and affine cluster algebras.

متن کامل

The Multiplication Theorem and Bases in Finite and Affine Quantum Cluster Algebras

We prove a multiplication theorem for quantum cluster algebras of acyclic quivers. The theorem generalizes the multiplication formula for quantum cluster variables in [19]. Moreover some ZP-bases in quantum cluster algebras of finite and affine types are constructed. Under the specialization q and coefficients to 1, these bases are the integral bases of cluster algebra of finite and affine type...

متن کامل

Acyclic Quantum Cluster Algebras

This thesis concerns quantum cluster algebras. For skew-symmetric acyclic quantum cluster algebras, we express the quantum F -polynomials and the quantum cluster monomials in terms of Serre polynomials of quiver Grassmannians of rigid modules. Then we introduce a new family of graded quiver varieties together with a new t-deformation, and generalize Nakajima’s t-analogue of q-characters to thes...

متن کامل

A MODIFIED BLM APPROACH TO QUANTUM AFFINE gln

We introduce a spanning set of BLM type, {A(j, r)}A,j, for affine quantum Schur algebras S△(n, r) and construct a linearly independent set {A(j)}A,j for an associated algebra K̂△(n). We then establish explicitly some multiplication formulas of simple generators E △ h,h+1(0) by an arbitrary element A(j) in K̂△(n) via the corresponding formulas in S△(n, r), and compare these formulas with the multi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012